XPS study of the chemical structure of the nickel/silicon interface
نویسندگان
چکیده
The chemical nature of the Ni!Si, Ni!Ni2Si and Si/Ni2Si interfaces have been investigated using x-ray photoelectron spectroscopy, Peak position, line shapes, and envelope intensities are used to probe the compositional structure of these systems. Two approaches have been employed: one approach examines the advancing planar silicide front by dynamically monitoring the in situ formation of Ni2SL This has the advantage of allowing examination of a realistic interface which is bounded on either side by an extended solid. The second approach follows the development of the Si/Ni interface using UHV depositions of thin layers of Ni on Si < 100>. He+ backscattering is used to follow the progression of the thin film reaction and to provide quantitative information on atomic composition. These experiments demonstrate that the Ni/Ni2Si interface consists of a Ni-rich silicide transitional phase while the Si!Ni2Si interface shows a transitional structure which is correspondingly Si-rich. Intensity analysis indicates that these interfacial regions are at least 22 A wide for a -Si substrates and 9-14 A wide for crystalline SL The as-deposited Ni/Si interface cannot be described as a unique singlephase, but rather as a chemically graded transitional region showing a composition which varies from Si-rich toNi-rich silicides.
منابع مشابه
Photoemission measurements of Ultrathin SiO2 film at low take-off angles
The surface and interfacial analysis of silicon oxide film on silicon substrate is particularly crucial in the nano-electronic devices. For this purpose, series of experiments have been demonstrated to grow oxide film on Si (111) substrate. Then these films have been used to study the structure of the film by using X-ray photo emission spectroscopy (XPS) technique. The obtained results indicate...
متن کاملNano Dispersed Metal-Ceramic Composite Materials of the Ni-SiO2 system
In the organic field effect transistors (OFETs) generation, the silicon gate oxide is 1-2 nm thick. A shrinking of this thickness down to less than 1 nm for the next generation will led to a couple of orders of magnitude increase in tunnelling as well as leakage currents. NiO-SiO2 can be used in a variety of devices, such as in circuit boards and detectors, including sensors, due to its porous ...
متن کاملNanowires fine tunable fabrication by varying the concentration ratios, the etchant and the plating spices in metal-assisted chemical etching of silicon wafer.
The metal-assisted chemical etching (MACE) was used to synthesis silicon nanowires. The effect of etchant concentration, etching and chemical plating time and doping density on silicon nanowires length were investigated. It is held that the increasing of HF and H2O2 concentrations lead to etching rate increment and formation of wire-like structure. The results show that, the appropriate ratio o...
متن کاملMICROSTRUCTURAL STUDY OF SILICON NITRIDE WHISKERS PRODUCED BY NITRIDATION OF PLASMA-SPRAYED SILICON LAYERS
plasma-sprayed silicon layers have been used to produce silicon nitride layers with fibrous microstructure which optimizes fracture toughness and strength. SEM examination of the specimens shows that the surface is covered by fine needles and whiskers of Si3N4.In order to study the oxygen contamination effect as well as other contaminants introduced during spraying and nitridation processes, su...
متن کاملInvestigation of HF/H2O2 Concentration Effect on Structural and Antireflection Properties of Porous Silicon Prepared by Metal-Assisted Chemical Etching Process for Photovoltaic Applications
Porous silicon was successfully prepared using metal-assisted chemical etching method. The Effect of HF/H2O2 concentration in etching solution as an affecting parameter on the prepared porosity type and size was investigated. Field emission electron microscopy (FE-SEM) confirmed that all etched samples had porous structure and the sample which was immersed into HF/H2O2 withmolar ratio of 7/3.53...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000